图片 3

做到了这一步,世界首台超越早期经典计算机的量子计算机问世

光的量子行走固然好,但每一根光纤须得维持不变:光纤的长度以及不同光纤之间的耦合强度无法及时调整。说到底,这种基于光学量子行走的计算机,缺少可编程的因素。

据中国科学技术大学常务副校长、中国科学院量子信息和量子科技创新研究院院长潘建伟院士介绍,量子计算在原理上具有超快的并行计算和模拟能力,能解决经典计算机无法解决的大规模计算难题。目前,国际学术界认为基于光子、超冷原子和超导线路体系的量子计算技术最有可能取得突破,我国在这3个方面均有世界领先的表现。

以前,量子计算速度比经典计算机快还只是停留在理论中,而该台原型机将这一理论变成现实迈出了坚实的第一步,把量子计算机真正推向和经典计算机竞争的擂台。这是历史上第一台超越早期经典计算机量子模拟机,为最终实现超越经典计算能力的量子计算这一国际学术界称之为“量子称霸”的目标奠定了坚实的基础。

在玻色-爱因斯坦凝聚态下,光和物质扮演的角色可以互换。所谓玻色凝聚,指处在同一量子态的冷原子的集合。简而言之,该集合的行为就像单个粒子一样整齐划一。这时候如果用脉冲光对其加以轰击,这颗“粒子”将以一定频率震颤,导致漂移。至于漂移的方向,取决于玻色凝聚的内部状态。

潘建伟介绍,基于光子的量子计算研究是我国的传统优势,在多光子纠缠领域始终保持着国际领先水平——2016年底刷新了世界光子纠缠纪录,提升到十光子纠缠,并自主研发了世界上最高品质和最高效率的量子点单光子源。

世界首台超越早期经典计算机的量子计算机问世

来源:arstechnica

潘建伟说:“在前期工作的基础上,我们构建了针对多光子‘玻色取样’任务的光量子计算原型机。”他解释,科学家们把“玻色取样”这一任务看成是测试计算能力的一个“竞赛项目”,“玻色取样”的计算量非常大,超级计算机难以完成。

图片 1图片 2

研究者证实,只要依次施以微波和激光脉冲,就能像经验丰富的弹球玩家一样,随意控制玻色凝聚的空间线路。不同的是,这里是量子弹球——每当玻色凝聚撞到反弹杠,就会同时向多个方向反弹,再撞到更多的反弹杠。更复杂的是,量子弹球会穿越不同的线路,再在各类节点重新组合。线路交叉之处,玻色凝聚发生自我干涉。干涉会导致在某些线路上找到玻色凝聚的概率降低,而在另一些线路上的概率上升。量子计算恰好需要这个。

5月3日,中国科学技术大学陆朝阳教授和学生们在中科院量子信息和量子科技创新研究院上海实验室检查光量子计算机的运行情况。新华社记者
金立旺摄
中国科学院量子信息和量子科技创新研究院5月3日宣布,我国科学家在基于光和超导体系的量子计算机研究方面取得重大突破:在光量子计算机研究中,建造了世界上超越早期经典计算机的光量子计算原型机;在超导量子计算机研究中,实现了世界上纠缠数目最多的超导量子比特处理器。这两项成果分别发表于国际学术期刊《自然·光子学》和《物理评论快报》上。

打破世界纪录 实现10个超导量子比特纠缠

话说回来,现在毕竟有了好的开端。玻色凝聚态下的量子行走,有利于将量子门和绝热计算的优势结合起来。其一,玻色凝聚是在真空洁净环境下,靠的是中性原子,有可能形成高度可靠、长期存在的量子位。在这个意义上,玻色凝聚更像是离子阱量子计算机。其二,它既有望解决更复杂的难题,又不必专门处理大量的量子位,倒更像是绝热量子计算的方法,发展前景可期。

图片 3

量子计算机是指利用量子相干叠加原理,理论上具有超快的并行计算和模拟能力的计算机。随着可操纵的粒子数的增加,量子计算机的计算能力呈指数增长,可以为经典计算机无法解决的大规模计算难题提供有效解决方案,具有巨大的发展潜力。一台操纵
50个微观粒子的量子计算机,对一些特定问题的处理能力甚至比超级计算机更强。如果现在经典计算机的速度是自行车,那量子计算机的速度就好比飞机。并行计算让量子计算机一秒钟就可完成超级计算机几年的计算任务,几天内就能解决传统计算机花费数百万年时间才能处理的问题。正是因为其广阔的发展前景,许多欧美发达国家以及大型高科技公司纷纷布局相关研究。

光可以实现量子行走,但需要配备一台新式计算机来算出每一步。不过,在玻色-爱因斯坦凝聚态下,光和物质的关系都反过来了。研究人员就是通过这个原理实现了玻色凝聚态下的量子行走。

(原载于《光明日报》 2017-05-0406版)

在超导体系,该研究团队自主研发了10比特超导量子线路样品,通过高精度脉冲控制和全局纠缠操作,成功实现了目前世界上最大数目的超导量子比特的多体纯纠缠,并通过层析测量方法完整地刻画了10比特量子态。这一成果打破了美国之前保持的9个量子比特操纵的记录,形成了一个完整的超导计算机的系统,使我国在超导体系量子计算机研究领域也进入世界一流水平行列。

造就:剧院式的线下演讲平台,发现创造力返回搜狐,查看更多

光量子计算机

原标题:我国量子计算机研究获重大进展:世界首台超越早期经典计算机的量子计算机问世

把光变成固体

同时,研究团队用这一处理器演示了求解线性方程组的量子算法,证明了通过量子计算的并行性加速求解线性方程组的可行性。“药物筛选、星体运动规律、气象预报等很多问题其实都可以归结为线性方程问题。而这也就说明,基于超导线路体系的量子计算机有很强的应用前景。”

在光学体系上,该研究团队在2016年已实现国际最高水平的十光子纠缠操纵。今年,在这一基础上,又利用我国自主研发的高品质量子点单光子源构建了世界首台在性能上能够超越早期经典计算机的单光子量子计算机。最新实验测试表明,该原型机的“玻色取样”速度比国际同行之前所有类似的实验加快至少
24000 倍,比人类历史上第一台电子管计算机和第一台晶体管计算机运行速度快
10-100 倍。

三类量子计算机

“这是历史上第一台超越早期经典计算机的基于单光子的量子模拟机,为最终实现超越经典计算能力的量子计算目标奠定了坚实基础。”潘建伟介绍,研究团队计划在今年年底实现大约20个光量子比特的操纵,“这将是光量子计算机的重大飞跃”。

埃尼阿克作为世界上第一台经典算法计算机,开辟了一个属于计算机的时代。而现在,以它为首的经典计算机真正的挑战来了。近日,由中国科学技术大学潘建伟、陆朝阳、朱晓波等,联合浙江大学王浩华教授研究组,在基于光子和超导体系的量子计算机研究方面取得了两项重大突破性进展,将为量子计算时代的到来奠定坚实的技术基础。

绝热量子计算则不涉及严谨运算,而是将问题转化为实现某一能量景观的最低能耗,打个比方,解决方案就在丘壑地区的深谷之中。思路是这样的:先从一片平滑的碗状地带入手,逐渐制造出“山陵”,直至量子位落入最深的“谷底”,计算结束。读出量子位的值,问题就解决了。

“现在,这个纪录被我们打破了!”据潘建伟介绍,由中国科学技术大学教授陆朝阳、朱晓波、潘建伟,浙江大学教授王浩华等合作,自主研发了10比特超导量子比特处理器,“可以简单类比为传统电脑的芯片”,通过高精度脉冲控制和全局纠缠操作,成功实现了目前世界上最大数目的超导量子比特的多体纯纠缠,并通过层析测量方法完整地刻画了10比特量子态。

根据计划,潘建伟研究团队将计划在今年年底实现大约 20 个光量子比特的操纵,
20
个超导量子比特样品的设计、制备和测试,量子计算机的速度将会成指数增长。

发表评论

电子邮件地址不会被公开。 必填项已用*标注

标签:
网站地图xml地图